### Greatest Common Factor (G C F)

| numb-<br>er | Factors | Common<br>Factors | GCF | numb-<br>er | Factors | Common<br>Factors | GCF |
|-------------|---------|-------------------|-----|-------------|---------|-------------------|-----|
| 1. 6        |         |                   |     | 6. 26       |         |                   |     |
| 12          | -       |                   |     | 39          |         |                   |     |
| 2./18       |         |                   |     | 7. 30       |         |                   |     |
| 27          |         |                   |     | 75          |         |                   |     |
| 3. 16       |         |                   |     | 8. 36       |         |                   |     |
| 20          |         |                   |     | 60          |         |                   |     |
| 4. 15       |         |                   |     | 9. 12       |         |                   |     |
| 18          |         |                   |     | 32          |         |                   |     |
| 5. 16       |         |                   |     | 10 27       |         |                   |     |
| 24          |         |                   |     | 36          |         |                   | 2.  |

Use another way to find greatest common factor (G C F)

|   |            | 1100) 00 2222         |            |            | - ( - )    |                              |            |
|---|------------|-----------------------|------------|------------|------------|------------------------------|------------|
| ~ | 1. 10, 20  | <sup>2</sup> . 21, 72 | √3.20, 25  | 4. 32, 20  | 5. 10, 48  | 6. 18, 48                    | 7. 48, 72  |
|   | 8.50, 20   | 9. 21, 64             | 10.64, 32  | 11. 54, 72 | 12 24, 56  | 13. 18, 27                   | 14. 32, 20 |
|   | 15. 12, 18 | 16. 21, 72            | 17. 72, 32 | 18. 48, 72 | 19.64, 32  | 20. 21, 64                   | 21. 54, 45 |
|   | 22. 54, 72 | 23. 45, 27            | 24. 36, 72 | 25. 18, 54 | 26. 36, 54 | 27, 27, 36                   | 28. 12, 52 |
|   | 29. 12, 24 | 30. 21, 42            | 31. 16, 48 | 32. 24, 72 | 33, 64, 48 | <sup>34</sup> <b>2</b> 1, 64 | 35. 54, 72 |
|   | 1          | 2                     | 3          | 4          | 5          | 6                            | 7          |
|   | 8          | 9                     | 10         | 11         | 12         | 13                           | 14         |

| 1  | 2  | 3  | 4  | 5  | 6  | 7  |
|----|----|----|----|----|----|----|
| 8  | 9  | 10 | 11 | 12 | 13 | 14 |
| 15 | 16 | 17 | 18 | 19 | 20 | 21 |
| 22 | 23 | 24 | 25 | 26 | 27 | 28 |
| 29 | 30 | 31 | 32 | 33 | 34 | 35 |

| 1 | or. | H        |
|---|-----|----------|
|   | 1   | e T or l |

- 37. Every number has 1 as a factor.
- 39. Every number greater than 1 has at least two different factor.
- 41. Any two numbers have 1 as a common factor.
- 38. 3 is a factor of every odd number.
- 40. Every even number greater than 1 has 2 as a factor
- 42. The only common factors of 12, 15, and 18 are 1 and 3

Divide (1-d) Quotients

$$(12)45$$
  $(25)82$   $(34)92$   $(42)126$   $(54)284$   $(86)445$ 

# Exercise 13D - 6

## Range, Mode, and Median

| 0 1 7                                                                                                |               |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|--|--|--|--|--|
| cities will have populations of 14 000 000 or                                                        | eaf           |  |  |  |  |  |  |  |  |  |
| more Here is a stem-and-leaf plot showing the                                                        | 5 2           |  |  |  |  |  |  |  |  |  |
| nonulations in <b>millions</b>                                                                       | 5 4 4 4 4     |  |  |  |  |  |  |  |  |  |
| 11 3                                                                                                 | 3 4 4 4 4     |  |  |  |  |  |  |  |  |  |
| 1. The least population shown in the stem-and-leaf plot is 14 m What is the greatest population?     | nillion. 1.   |  |  |  |  |  |  |  |  |  |
| 2. What is the range of the populations listed?                                                      | 2.            |  |  |  |  |  |  |  |  |  |
| 3. New York and Bombay, India will have the median population 2000. What is the median?              |               |  |  |  |  |  |  |  |  |  |
| 4. What is the mode of the populations listed?                                                       |               |  |  |  |  |  |  |  |  |  |
| 5. Buenos Aires, Argentina and Manila, Philippines each will have                                    | ve a 5. Range |  |  |  |  |  |  |  |  |  |
| population of 13 million in 2000. If these populations are add                                       |               |  |  |  |  |  |  |  |  |  |
| the plot, what will be the median? the range? the mode?                                              | Modes         |  |  |  |  |  |  |  |  |  |
| This is a listing of the prices of several video games.                                              | 6.            |  |  |  |  |  |  |  |  |  |
| \$19 \$24 \$39 \$42 \$47 \$4 <b>9</b> \$49 \$55 \$65                                                 |               |  |  |  |  |  |  |  |  |  |
|                                                                                                      | 7.            |  |  |  |  |  |  |  |  |  |
| 6. What is the price range of these video games?                                                     | 8.            |  |  |  |  |  |  |  |  |  |
| 7. What is the mode?                                                                                 |               |  |  |  |  |  |  |  |  |  |
| 8. What is the median price?                                                                         | 9. Range      |  |  |  |  |  |  |  |  |  |
| 9. If the highest priced game is eliminated from the list what w                                     | ould Median   |  |  |  |  |  |  |  |  |  |
| be the median? the range? the mode?                                                                  | Modes         |  |  |  |  |  |  |  |  |  |
| 10. I am thinking of 4 numbers between 1 and 6. The range, mo                                        |               |  |  |  |  |  |  |  |  |  |
| and median of these numbers are all 3. Give the 4 numbers                                            | •             |  |  |  |  |  |  |  |  |  |
| 11 The table shows the number of minutes needs 11 St                                                 | iom I oof     |  |  |  |  |  |  |  |  |  |
| 11. The table shows the number of minutes people stayed at Andrea's Restaurant. Use the data to plot | em Leaf       |  |  |  |  |  |  |  |  |  |
| a stem-and-leaf plot below (Small to Large)                                                          |               |  |  |  |  |  |  |  |  |  |
| 22 25 44 45 20 00                                                                                    |               |  |  |  |  |  |  |  |  |  |
| 22 35 41 45 28 60 —<br>32 55 32 45 36 48                                                             |               |  |  |  |  |  |  |  |  |  |
| 25 30 36 65 25 28                                                                                    |               |  |  |  |  |  |  |  |  |  |
| 26 24 40 30 24 50                                                                                    |               |  |  |  |  |  |  |  |  |  |
| 12. Do you expect the median to be in stem 5?                                                        | 13. Range     |  |  |  |  |  |  |  |  |  |
| 13. If no one stayed for more than 50 minutes, how                                                   | Median        |  |  |  |  |  |  |  |  |  |
| would this affect the range? the median? the modes?                                                  | Modes         |  |  |  |  |  |  |  |  |  |
|                                                                                                      |               |  |  |  |  |  |  |  |  |  |

# **Exercise 13D - 13**

# 6

### Reading a Schedule

|   | Trains from Madison to Hamilton |                     |                                     |  |  |  |  |  |  |  |
|---|---------------------------------|---------------------|-------------------------------------|--|--|--|--|--|--|--|
|   | Leaves<br>Madison               | Arrives<br>Hamilton | Train Runs                          |  |  |  |  |  |  |  |
|   | 6:22 A.M.                       | 7:00 A .M.          | Daily except<br>Saturday and Sunday |  |  |  |  |  |  |  |
|   | 7:20 A.M.                       | 7:56 A.M.           | Daily except<br>Saturday and Sunday |  |  |  |  |  |  |  |
|   | 7:50 A .M.                      | 8:30 A.M.           | Saturday and Sunday only            |  |  |  |  |  |  |  |
|   | 8:10 A.M.                       | 8:48 A.M.           | Daily                               |  |  |  |  |  |  |  |
| - | 8:40 A.M.                       | 9:20 A.M.           | Daily except<br>Saturday and Sunday |  |  |  |  |  |  |  |
|   | 10:20 A .M.                     | 11:00 A.M.          | Saturday only                       |  |  |  |  |  |  |  |
|   | 11:49 A.M.                      | 12:30 P.M.          | Daily except Sunday                 |  |  |  |  |  |  |  |
|   | 2:30 P.M.                       | 3:00 P.M.           | Sunday only                         |  |  |  |  |  |  |  |
| - | 4: 19 P.M.                      | 5:00 P.M.           | Daily except<br>Saturday and Sunday |  |  |  |  |  |  |  |
| - | 5:05 P.M.                       | 5 :42 P.M.          | Daily except<br>Saturday            |  |  |  |  |  |  |  |

### Use the schedule to answer the questions.

- Mrs. Karas wants to go to Hamilton on Saturday. Which train must she take to arrive by 11:00 A.M.?
- Mr. Turner is taking his class to see a play in Hamilton on Wednesday. The play begins at 3:00 P.M. Which train should they take from Madison?
- 3. Lee Anne takes the 8:40 A.M. train from Madison. At what time should she arrive in Hamilton?
- 4. Thelma wants to be in Hamilton by 5:30 P.M. on Sunday. What is the latest train she can take from Madison?
- 5. How many trains leave Madison for Hamilton on Sunday afternoons?

- 6. How many trains go from Madison to Hamilton on Saturday mornings?
- 7. How long does it take the 10:20 A.M. train to go from Madison to Hamilton?
- 8. Fran will take the first train leaving Madison on Sunday. At what time will she arrive in Hamilton?
- 9. On Tuesday Alex arrives at the Madison Station at 8:15 A.M. How long does he have to wait for the next train to Hamilton?
- 10. Which train leaves Madison in the morning and arrives in Hamilton in the afternoon?
- 11. The 8:10 A.M. train is 11 minutes late. At what time should it now arrive in Hamilton?
- 12. Tyrone is taking the 2:30 P.M. train from Madison to Hamilton. On what day of the week is he traveling?
- 13. Miss Livingston rides the 5:05 P.M. train each week day.
  What is the tota1 number of minutes she spends riding this train in one week?
- 14. Do all the Saturday trains shown on the schedule take the same amount of time to go from Madison to Hamilton?

| 1.  |  |  |
|-----|--|--|
| 2.  |  |  |
| 3.  |  |  |
| 4.  |  |  |
| 5.  |  |  |
| 6.  |  |  |
| 7.  |  |  |
| 8.  |  |  |
| 9.  |  |  |
| 10. |  |  |
| 11. |  |  |
| 12. |  |  |

13.

14.

# **CHALLENGE**

Can you meet this challenge?
Complete the multiplication table grid.

(Hint: Begin by determining the numbers in the first row and

column; then fill in the rest or the boxes.)

| x |   |    |    |    |    |     |     |    |      |     |    |    |
|---|---|----|----|----|----|-----|-----|----|------|-----|----|----|
|   |   |    |    | 32 |    |     |     |    |      |     |    | 16 |
|   |   | 55 |    |    |    |     | 132 |    |      |     |    |    |
|   | 9 |    |    |    | 27 |     |     |    | Sec. |     |    |    |
|   |   |    |    |    |    |     |     |    | 48   |     | 36 |    |
|   | 7 |    |    |    |    |     |     | 49 |      |     |    |    |
|   |   | 20 | 44 |    |    |     |     |    |      |     |    |    |
|   |   |    |    | 8  |    | 20  |     |    |      |     |    |    |
|   |   |    |    |    |    |     | 144 |    |      | 108 |    |    |
|   |   |    |    |    | 9  |     |     |    |      |     | 18 |    |
|   |   |    |    |    |    |     |     |    | 40   |     |    | 10 |
|   |   |    |    |    |    | 100 |     |    |      | 90  |    |    |
|   |   |    | 11 |    |    |     |     | 7  |      |     |    |    |

EXERCISE 10C-8 Tsai's Math Class

tal Practice (Do twice)

$$23 \times 4 =$$

$$36 \times 9 =$$

$$8.3 \times 4 =$$

$$86x4 =$$

$$7.6 \times 4 =$$

$$7.4 \times 5 =$$

$$93 \times 5 =$$

$$74 \times 5 =$$

$$75 \times 9 =$$

$$77 \times 4 =$$

$$45 \times 3 =$$

$$72 \times 6 =$$

$$74 \times 7 =$$

$$83 \times 8 =$$

$$7.5 \times 6 =$$

$$63 \times 7 =$$

$$7.6 \times 4 =$$

$$86 \times 4 =$$

$$64 \times 5 =$$

$$78 \times 9 =$$

## $54 \times 8 =$

$$87 \times 4 =$$

$$67 \times 3 =$$

$$9.5 \times 3 =$$

$$7.5 \times 6 =$$

$$42 \times 7 =$$

$$84 \times 8 =$$

$$67 \times 8 =$$

$$56x6 =$$

$$89 \times 4 =$$

$$6.5 \times 7 =$$

$$89 \times 8 =$$

$$7.6 \times 4 =$$

$$74 \times 5 =$$

$$64 \times 5 =$$

$$67 \times 5 =$$

 $73 \times 9 =$ 

$$64 \times 5 =$$

$$59 \times 5 =$$

$$88 \times 9 =$$

$$84 \times 8 =$$

$$97 \times 3 =$$